
Solution Sheet 10

Exercise 10.1

Let (Tt) denote the transition semigroup induced by an SDE with coefficients satisfying the
usual Lipschitz and linear growth conditions. Prove that (Tt) has the C0 property, and that it is
strongly continuous on C0.

Proof. TBC

Exercise 10.2

Let (Tt) be a strongly continuous semigroup on C0 with generator L, induced by a cádlág
Markov process (Xt). Suppose that f, g ∈ C0 and that

Mt = f(Xt) −
∫ t

0
g(Xr)dr

is a martingale. Then f ∈ D(L) and Lf = g.

Proof. By the martingale property, E(Mt) = E(M0) = f(X0) and in particular

E[f(Xt)] −E
[∫ t

0
g(Xr)dr

]
= f(X0).

Considering X0 = x and using that, by definition, Ttf(x) = E[f(Xt)], then

1

t
(Ttf(x) − f(x)) =

1

t
E

[∫ t

0
g(Xr)dr

]
=

1

t

[∫ t

0
Trg(x)dr

]
.

This equality at all x implies the identity in C0,

1

t
(Ttf − f) =

1

t

[∫ t

0
Trgdr

]
.

Since r 7→ Trg is continuous on C0, the right hand side converges, in C0, to g which concludes the
proof.

Exercise 10.3

Let a, σ be given constants. Define the mapping L∗ by

L∗ : ϕ(x) 7→ −(axϕ(x))′ +
1

2
(σ2x2ϕ(x))′′.

Propose a solution to the PDE
dpt
dt

= L∗pt.
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Proof. We recall the Kolmogorov Forward Equation, that if X is a Markov Process whose transition
semigroup has generator L, and with law that is absolutely continuous with respect to the Lebesgue
Measure, then its density p solves the PDE

dpt
dt

= L∗pt.

The idea is to look at the given PDE and try to find some SDE with generator L whose adjoint
has the given form.

In this case, we would be able to conclude that the solution of the PDE is the density of the
law of the solution to the SDE with generator L. Recall that for an SDE

dXt = f(XT )dt + g(Xt)dWt

then

L∗ : ϕ 7→ (−fϕ)′ +
1

2
(g2ϕ)′′

so in the given PDE,
f(x) = ax, g(x) = σx.

Therefore the solution of the given PDE is the density of the law of Xt,

dXt = aXt + σXtdWt

which has solution Geometric Brownian Motion, which is of log-normal distribution.

Exercise 10.4

Let (Yt) be a continuous adapted stochastic process, such that for every t ≥ 0 there exists a
non-negative random variable At ∈ L1(Ω;R) such that for any δ > 0,

1

δ
|E (Yt+δ − Yt|Ft)| ≤ At

and
lim
δ→0

E (Yt+δ − Yt|Ft) = 0.

Prove that (Yt) is a martingale.

Proof. Let t ≥ s and set Zt = E(Yt|Fs). We wish to show that Zt = Zs, and do so by showing that
it has null derivative from above at all t. Indeed,

lim
δ→0

Zt+δ − Zt

δ
= lim

δ→0

1

δ
E (Yt+δ − Yt|Fs)

= lim
δ→0

1

δ
E [E (Yt+δ − Yt|Ft) |Fs] .

Now we use the Dominated Convergence Theorem, with domination from At, to take the limit
inside which is zero from the second condition.
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Exercise 10.5

For B a standard real valued Brownian Motion, show that Xt := |Bt| is a Markov process,
and write down its transition function. Prove that it induces a C0(R+) semi-group of generator
 Lf = 1

2f
′′ with domain {

f ∈ C2(R+;R) : f, f ′′ ∈ C0 (R+) , f ′(0) = 0
}
.

Proof. Set TB
t to be the semigroup of real Brownian motion. Given a bounded measurable function

f : R+ 7→ R. By definition of Markov process,

E [f (Xs+t) | Fs] = E [f (|Bs+t|) | Fs] = E [f (|Bs+t|) | Bs]

=

∫ ∞

−∞
f(|y|) 1√

2πt
exp

(
−(y −Bs)

2

2t

)
dy

=

∫ ∞

0
f(|y|) 1√

2πt
exp

(
−(y −Bs)

2

2t

)
dy +

∫ 0

−∞
f(|y|) 1√

2πt
exp

(
−(y −Bs)

2

2t

)
dy

=

∫ ∞

0
f(|y|) 1√

2πt
exp

(
−(y −Bs)

2

2t

)
dy +

∫ ∞

0
f(|y|) 1√

2πt
exp

(
−(y + Bs)

2

2t

)
dy

=

∫ ∞

0
f(y)

1√
2πt

exp

(
−(y −Bs)

2

2t

)
dy +

∫ ∞

0
f(y)

1√
2πt

exp

(
−(y + Bs)

2

2t

)
dy

It’s clear that

(t, x) ∈ R+ × R+ 7→ Pt(x,A) =

∫ ∞

0

(
1√
2πt

exp

(
−(y − x)2

2t

)
+

1√
2πt

exp

(
−(y + x)2

2t

))
1A(y)dy

is a measurable function. Thus, it suffices to show that (Tt)t≥0 satisfy Chapman-Kolmogorov’s
identity. Let f be a bounded measuable function on R+. Define g : R 7→ R by g(y) = f(|y|). By
using similar argument as the proof of part 1, we have

Ttf(|x|) = TB
t g(x) ∀x ∈ R,

and therefore

Tt+sf(x) = TB
t+sg(x) = TB

t TB
s g(x) =

∫
R
TB
s g(y)

1√
2πt

exp

(
−(y − x)2

2t

)
dy

=

∫
R+

TB
s g(y)

1√
2πt

exp

(
−(y − x)2

2t

)
dy +

∫
R−

TB
s g(y)

1√
2πt

exp

(
−(y − x)2

2t

)
dy

=

∫
R+

TB
s g(y)

1√
2πt

exp

(
−(y − x)2

2t

)
dy +

∫
R+

TB
s g(−y)

1√
2πt

exp

(
−(y + x)2

2t

)
dy

=

∫
R+

Tsf(y)
1√
2πt

exp

(
−(y − x)2

2t

)
dy +

∫
R+

Tsf(y)
1√
2πt

exp

(
−(y + x)2

2t

)
dy

= TtTsf(x) ∀x ∈ R+.

Given f ∈ C0 (R+). Then g(x) ≡ f(|x|) ∈ C0(R). Since TB is a C0 semigroup, we see that T is
as well. Let f be a twice continuously differentiable function on R+, such that f and f ′′ belong to
C0 (R+) and f ′(0) = 0. Define g : R 7→ R by g(y) = f(|y|). Observe that

lim
x→0+

g(x) − g(0)

x
= lim

x→0+

f(x) − f(0)

x
= f ′(0).
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and

lim
x→0−

g(x) − g(0)

x
= lim

x→0−

f(−x) − f(0)

x
= −f ′(0).

Since f ′(0) = 0, g′(0) exists and therefore

g′(y) = f ′(|y|) sgn(y)

and
g′′(y) = f ′′(|y|),

where sgn(y) = 1{y>0} − 1{y<0}. Thus g is a twice continuously differentiable function on R, such

that g and g′′ belong to C0(R). Let LB be the generator of
(
TB
t

)
t≥0

. Then LBh = 1
2h

′′. We have

Lf(x) = lim
t→0

Ttf(x) − f(x)

t
= lim

t→0

TB
t g(x) − g(x)

t
=

1

2
g′′(x) =

1

2
f ′′(x) ∀x ∈ R+

and therefore Lf = 1
2f

′′. Conversely, assume that there exists f ∈ C0 (R+) ∩ D(L) such that

f ′(0) ̸= 0. Then g′(0) doesn’t exist and limt→0
Ttf(x)−f(x)

t exists for all ∀x ∈ R+. We see that

lim
t→0

TB
t g(x) − g(x)

t
= lim

t→0

Ttf(x) − f(x)

t
= Lf(x) ∀x ≥ 0,

lim
t→0

TB
t g(x) − g(x)

t
= lim

t→0

Ttf(−x) − f(−x)

t
= Lf(−x) ∀x < 0,

and therefore LBg(x) = Lf(|x|) for all x ∈ R. Since Lf ∈ C0 (R+), we see that LBg ∈ C0(R) and,
hence, g ∈ D

(
LB
)

=
{
h ∈ C2(R) | h and h′′ ∈ C0(R)} which is a contradiction. Thus, we reach

the desired conclusion.
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